
Teaching of Computing to Mathematics Students
Programming and Discrete Mathematics

Jack Betteridge
Department of Mathematical Sciences

J.D.Betteridge@bath.ac.uk

James H. Davenport
Dept. Mathematics and Computing

J.H.Davenport@bath.ac.uk

Melina Freitag
Department of Mathematical Sciences

M.A.Freitag@bath.ac.uk

Willem Heijtljes
Department of Computer Science

W.B.Heijltjes@bath.ac.uk

Stef Kynaston
Department of Mathematical Sciences

S.J.Kynaston@bath.ac.uk

Gregory Sankaran
Department of Mathematical Sciences

G.K.Sankaran@bath.ac.uk

Gunnar Traustason
Department of Mathematical Sciences

University of Bath
Bath, UK

G.Traustason@bath.ac.uk

ABSTRACT
This paper describes a course that has been running for over nine
years, teaching Programming to large number of Mathematics stu-
dents. The distinctive features of it include the fact that it was
designed as part of a wholesale curriculum review (rather than
being a pre-packaged course), that its design took into account the
nature of the syllabus and what else the students would be using
programming for, both in the rest of their course and beyond, and
that the course is more than “just” a programming course.

CCS CONCEPTS
• Applied computing → Mathematics and statistics; Educa-
tion; • Software and its engineering→Multiparadigm languages;

KEYWORDS
Programming Education, Mathematics, MATLAB

ACM Reference Format:
Jack Betteridge, James H. Davenport, Melina Freitag, Willem Heijtljes,
Stef Kynaston, Gregory Sankaran, and Gunnar Traustason. 2019. Teach-
ing of Computing to Mathematics Students: Programming and Discrete
Mathematics. In Computing Education Practice (CEP ’19), January 9, 2019,
Durham, United Kingdom. ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.1145/3294016.3294022

This paper is an update of [6], which never appeared due to HMG’s
cuts to the Higher Education Academy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CEP ’19, January 9, 2019, Durham, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6631-1/19/01. . . $15.00
https://doi.org/10.1145/3294016.3294022

1 INTRODUCTION
This paper describes a novel approach to the integrated teaching
of computing and discrete mathematics to mathematics students,
based on:

• Close collaboration, and team teaching, by the Departments
of Mathematical Sciences and Computer Science;
• Development of a bespoke interdisciplinary syllabus, 50%
discrete mathematics and 50% computing, rather than an
“o�-the-shelf” Computer Science syllabus;
• Using programming concepts as concrete instantiations of
the mathematics concepts taught in the course, for example
recursion as a counterpart to induction, viewing Fast Fourier
Transforms as a “divide and conquer” algorithm;
• Choice of a programming delivery vehicle (MATLAB) close
to the immediate needs of the students;
• Attention to the pedagogy of the craft of programming [5].
Many of our ideas are similar to those of [10], though this
postdates our early work.

2 BACKGROUND
Until 1997, the University of Bath had a School of Mathematics
Sciences, including a Computing Group. Programming was taught
in Fortran, until in 1984 the second author led a move to C. Rele-
vance to, and preparation for, the future computing streams was
the principal criterion. Then a separate Computer Science degree,
with a di�erent �rst year, was introduced. This paper focuses on the
evolution and practice of computing as it is taught to mathematics
students.

Until 2009, �rst year Mathematics students (of which there are
currently 304) took a programming course provided by the Comput-
ing Group and later by the separate Computer Science Department.
The emphasis was on programming per se in a general-purpose
language: C until 2000, then Java. The main weaknesses of this,
frequently identi�ed by students, were the lack of apparent rele-
vance and the lack of connection with the rest of the curriculum
where programming was used in later years, either in MATLAB or
R. Following restructuring and detailed curriculum review (though

CEP ’19, January 9, 2019, Durham, United Kingdom J.D. Be�eridge et al.

a complete curriculum review is not a necessary requirement!) the
current model evolved.

3 WHERE DOES IT FIT?
The course is called, and delivers, Programming And Discrete
Mathematics. It runs throughout the �rst year, as one of �ve com-
pulsory streams: the others are Algebra, Analysis, Mathematical
Methods and Probability/Statistics. The course is 50% Program-
ming and 50% Mathematics, so the “programming” share of the �rst
year is 10%, which is unchanged, but its e�ectiveness has greatly
increased.

The Bath �rst year in Mathematical Sciences is just over 300
students, typically with A* grades in A-level Mathematics and Fur-
ther Mathematics, or equivalent quali�cations. In addition there
are students in Computer Science and Mathematics, Mathematics
and Physics etc., but these do not take XX10190.

3.1 Aims
In practice, the aim, which underpinned all the thinking as the
course was being designed, was

The course should be, and be seen to be, relevant to
the rest of the mathematics curriculum, and not just
as “a useful skill for later on”.

From this followed the fact that it could not be just a comput-
ing course. Certain amounts of discrete mathematics (using the
term slightly loosely) were added or moved from elsewhere, and we
ended up with a 50:50 mixture with the programming (in MATLAB).
This mathematics included orders of growth and the O-notation
(which students seem to �nd more approachable with a concrete
application), elementary graph theory, Fast Fourier Transforms,
elementary coding theory and cryptography (Di�e–Hellman and
RSA). The coding theory relies on the linear algebra taught in the
algebra stream: moreover, it uses and emphasises the fact that it is
taught over an arbitrary �eld. The cryptography part is helped by
the fact that the MATLAB Symbolic Toolbox allows examples with
realistic-sized numbers: indeed the students do two problem sheets,
identical except that one has two-digit numbers for hand calcu-
lation, and the other has 60-digit numbers for MATLAB-assisted
computation. However, by far the most important in terms of rela-
tionship with the programming was the teaching of induction.

The �rst few weeks of the course are based around the thesis
that the Mathematical de�nition of induction is equivalent to pro-
gramming implementation by recursion.

The �rst example, literally in week 1, is the Fibonacci numbers,
which are de�ned by induction, programmed by recursion, and in
the next four weeks have theorems on growth proved by induction,
and have these related to the O-complexity of the programs pro-
duced earlier. More speci�cally, three families of solutions to the
Fibonacci problem are presented, with the lecturers and students
proving the complexity results.

E������� 1 (D������� ���������). Use Fn = Fn�1 + Fn�2 to
work down to the base cases. The complexity is exponential in n:

O

✓✓
1+
p
5

2

◆n ◆
.

E������� 2 (I��������). De�ne the base cases and use Fi = Fi�1+
Fi�2 to work up until i = n. The complexity is linear in n: O (n).

E������� 3 (M�����������). Therefore playing to the strengths
of MATLAB:

Fn
Fn�1

!
=

1 1
1 0

!
Fn�1
Fn�2

!
hence

Fn
Fn�1

!
=

1 1
1 0

!n�1
F1
F0

!
,

and using “divide-and-conquer” (recursive) exponentiation we can
compute Fn in time logarithmic in n: O (logn).

3.2 Reinforcing the Link
One challenge when teaching an interdisciplinary course is con-
vincing the students of the bene�t of learning a topic outside of
the perceived scope of their degree. Whilst many practising mathe-
maticians use programming, or the thought processes behind pro-
gramming, in their daily lives, this is not obvious to �rst year
mathematics undergraduate students.

To answer the question “why are we learning programming
on a mathematics degree?” a short (5–10 minutes) talk is given
fortnightly by one of the tutors, or a lecturer who doesn’t teach on
the unit, to the whole cohort. This is at the beginning of a lecture
and the tutor/lecturer explains a little about their research, and how
they use programming. These seem to have been well-received,
with thoughtful questions from the students after each one.

The link between mathematics and programming is further re-
inforced by the whole teaching body. The professors and tutors
are sourced from both the Mathematics and Computer Science De-
partments, and range in specialities from Algebraic Geometry via
Computer Algebra to Numerical Analysis and Computer Vision.

3.3 Course Text
Initially, we decided to go for an, essentially mandatory, course text.
This was a composite text based on [3, 8] with a small amount of our
own material. [6] describes the process, but, as the lecturers wrote
more material, the mandatory course text became less attractive and
we dropped it in 2016. [4, the successor to [3]] is still recommended
as a MATLAB reference.

4 DELIVERY
4.1 Overview
The course runs throughout the teaching year (October–May), and
is taught on the basis of two lectures and one whole-cohort prob-
lems class per week, the same as the other four streams (algebra,
analysis, methods and probability/statistics), so is worth 12 ECTS
credits. It is team taught, with a computer scientist (the second
and fourth authors) and a mathematician (the third and seventh
authors) taking responsibility for the lectures and problems class,
and tutors, typically postgraduates or �nal-year MMath students,
taking responsibility for the practical laboratories and marking
mathematics work. Normally1, each week has both “mathematics”
and “computing” lectures and student work.

4.2 Whole-Cohort Classes
In a typical week, each lecturer gives one lecture, and both share
the problems class, going over past and ongoing work. The ratio in

1We do take advantage of the �exibiity that team teaching provides, most recently to
support parental leave.

Teaching of Computing to Mathematics Students CEP ’19, January 9, 2019, Durham, United Kingdom

the problems class is dynamic, and will be roughly 5% programming
and 95% mathematics, unless more time is needed to respond to
student queries on programming aspects.

4.3 Laboratory Classes
These are weekly and last for 50 minutes. We are fortunate enough
to have a 75-seater laboratory, which we split into seven groups of
10 machines each. Each student is assigned to a speci�c group in
a speci�c laboratory session, and the group has a designated tutor.
Thus each student has the same tutor for the whole semester, and
often for the whole year. The laboratory tutors are also responsible
for marking the mathematics homework, and giving feedback dur-
ing the laboratory classes, though in practice there is rarely enough
time to do more than hand over the sheets of paper.

4.4 Virtual Learning Environment
We make heavy use of the University’s Moodle VLE. Course ma-
terials and problem sheets are distributed via it, Coursework and
tickable exercises are collected via it, feedback is given on course-
work via it. The lecturers tend to respond to student e-mail queries
by posting on the Moodle Forum, rather than replying directly, so
that all students can see the (anonymised) question/answer.

4.5 Programming Videos
In the past a live coding demonstration formed part of the pro-
gramming component of the problem classes in Semester 1, which
allowed students to see how programs are written and debugged
in real time. Starting in 2017 this was replaced by screen capture
videos, with commentary, (produced by the �rst author) to allow
more time for lecturing. These videos outline the solution to the
previous week’s programming assignment (tickable), but also in-
clude intentional mistakes and debugging advice. Furthermore, this
format allows the demonstration of some more advanced features
of MATLAB, e.g. plotting and timing. This video resource allows
students to revisit topics in their own time as well as providing a
reference during labs, and reduces their use of third party sources
available online, which may not be relevant to this course.

Figure 1: Frame from video demonstration: Using MATLAB
to plot execution times for merge and insertion sort per-
formed on di�erent sized arrays.

4.6 Assessment
The Discrete Mathematics half of the course is assessed traditionally
and in line with the other courses: formative exercise sheets done
weekly, and summative end-of-semester exams (at 20% and 30% of
the total marks). The summative assessment of the programming is
done by two courseworks (one per semester) each worth 25%.

The novelty is in the formative assessment of the programming.
In weeks when there is no signi�cant e�ort on summative practical
work, there is a weekly “tickable” exercise — in practice 12 in the
year. By “tickable” we mean that they are assessed as pass/fail by
the laboratory tutors in the sessions, and the students (and tutors)
are told that we expect students to be able to pass every exercise
with reasonable diligence. For example, the �rst such exercise is to
write a recursive MatLab function to compute Fibonacci numbers
from Fn = Fn�1 + Fn�2, by analogy (this is made explicit in the
exercise) with the supplied programme for computing factorials
based on n! = n⇤ (n�1)!. The supplied programme was constructed
in front of the students in the lecture, and hence this follows the
paradigm described as modeling/sca�olding by [10, §2.1].

Lest this seem too trivial, this is the speci�cation of the last
tickable in semester 2.

E������� 4. Write two MatLab functions: TreeAdd and traverse,
in �les of the same name. TreeAdd(t,str), where t is a binary tree
of strings and counts, and str is a string, returns the new tree with
str inserted in order (or with the corresponding count increased if
str was already in the tree). traverse(t,@f) should traverse such
a tree t, calling the function f on each node in turn, in alphabetical
order of the strings. In the parlance of [the programming] lectures, it
should therefore do an inorder traversal.

The incentive for the tickables is that the tickables develop the
students’ programming skills, and lead up to the summative prac-
tical work: with the motivation that failure to get 80% ticks will
result in the summative coursework marks being reduced pro rata.
In practice we have very rarely had to apply this restriction: the
(very few) students who do not do the tickables fail the practical
work anyway.

Many tickables from 5 onward are supported by a quiz: good
students answer a quiz based on running their code, and then can
submit their code using “conditional assignments” in the Moodle
online platform. This is done in advance of the laboratory session,
so that the tutors can look at it in advance, and spend the lab session
concentrating on the weaker students who have not done the quiz.

5 DOES IT WORK?
It has certainly reduced the failure rate on programming: the Java
course was frequently seeing a failure rate of over 30%, while the
2017/18 run of this module had a failure rate of 6%, of whom 1%
had condoned failures and the other 5% had enough other module
failures that they had to withdraw or repeat the year.

As a �rst-year course, it has several customers.
Numerical Analysis lecturers in subsequent years. Thesewere

initially identi�ed as the prime bene�ciaries, and the have
indeed bene�tted. The �rst Numerical Analysis course no
longer disappears under the weight of teaching program-
ming. In particular the students have met �oating-point

CEP ’19, January 9, 2019, Durham, United Kingdom J.D. Be�eridge et al.

numbers in XX10190. Even though the Scienti�c Comput-
ing Course is taught in a di�erent language (Currently For-
tran/MPI, soon more likely C), the students have experience
with programming and the numbers on this Scienti�c Com-
puting Course have more than tripled in the past 5 years,
since the students know the concept of programming.

Statistics lecturers were an unexpected bene�ciary. It turned
out that there was enough MATLAB in the �rst semester
to allow the second semester statistics course (following on
from the �rst semester probability course) to issue a one-
page MATLAB/R conversion sheet, rather than spend several
weeks explaining R.

Computer Science lecturers in subsequent years. Several tens
of the Mathematics students take Computer Science options
such as Cryptography in later years, and having experience
with programming greatly helps them with these options.

Students on the course The course is still not especially pop-
ular, and we do get in past students, especially those that
have used these skills in placement, or are now using them
in their research, to talk brie�y about the bene�ts at the start
of the problem classes. It does get discussed in Sta�-Student
Liaison Committees, often with the students from later years
helping the sta� explain the bene�ts.

Students after the course Many students use these skills later,
either in courses or on placement, and some are explicitly
grateful to the sta�. This is hard to capture quantitatively.
It is also worth noting that any unpopularity has worn o�,
and this course does not feature in NSS comments.

Placement students More than 100 students in the Mathe-
matics department take placements in year 3 of their course.
Placement visitors and students frequently report that pro-
gramming in XX10190 was the most useful skill learned in
their �rst 2 years which prepared them for their placement.

Former Students It is hard to unpick the e�ects of di�erent
elements of a programme, but we note that, after allowing
for prior attainment etc. (see [7]), Bath mathematics students
come sixth (male) or fourth (female) [1] amongst all mathe-
matics courses for earnings �ve years after graduation.

6 WHO ELSE HAS DONE THIS?
The idea came out of the 2008/9 whole course review, with which
the sixth author was heavily engaged, and discussions between him
and the second author.

We know of no university adopting a very similar approach,
though Surrey’s Professional Skills Development course has some
similarities (and we have talked with that course’s main author).
There is growing interest, though, in the light of the recommenda-
tion in [2] that every mathematician should learn to program.

7 WHATWILL YOU DO NEXT?
We are coming up to another whole-course review. It is too early
to pre-empt the decisions, but the following seem clear.

• The next curriculum must incorporate programming.
• The language need not be MATLAB, and Python is mooted
as a successor.

• The decision is a major one a�ecting many courses, not just
the “programming” course, but also Statistics and Numerical
Analysis courses in particular.

8 WHY ARE YOU TELLING US THIS?
We learned various lessons, some Mathematics-speci�c but many
not, which we think are useful.

(1) “O�-the-shelf” generic programming courses, with little or
no linkage to the main subject the students are studying, can
be very unpopular, and an approach that says “why do these
students need to learn programming” can produce a better
result. As more Departments look at incorporating program-
ming for employability reasons (especially Mathematics ones
in the light of [2]), this is worth noting.

(2) In particular, although programming is fundamentally a
generic skill, signi�cant thought has to be given to the most
appropriate language for a �rst programming course, and
Java, despite its general popularity in the U.K. [9], was not
an appropriate choice for this course’s predecessor. Equally,
many subjects would �ndMATLAB utterly the wrong choice.

(3) Custom texts are perfectly viable, even down to class sizes of
fewer than 100, and in the early years of course development
were a valuable support.

(4) The “Tickable” idea, now adopted by our Computer Science
Department for their introductory course, is a useful way
of getting students, particularly the weaker ones, working
on programming immediately, rather than waiting for the
coursework then panicking.

Acknowledgements
We are grateful to Ivan Graham and Alastair Spence, who have
also lectured on this course, and William Saunders for being a co-
producer of the videos. We are also grateful to the many tutors on
the course over the years, and to the students, and especially former
students, who have fed back on the course as it has evolved.

REFERENCES
[1] BBC. 2018. Which university courses boost graduates’ wages the most? https:

//www.bbc.co.uk/news/education-44413086. (2018).
[2] P. Bond. 2018. An Independent Review of Knowledge Exchange in the Mathe-

matical Sciences. https://epsrc.ukri.org/newsevents/news/mathsciencereview/.
(2018).

[3] S.J. Chapman. 2009. Essentials of MATLAB Programming. Cengage.
[4] S.J. Chapman. 2013. MATLAB(R) Programming with Applications for Engineers.

Cengage.
[5] J.H. Davenport, A. Hayes, R. Hourizi, and T. Crick. 2016. Innovative Pedagogical

Practices in the Craft of Computing. In Proceedings LaTiCE 2016. 115–119.
[6] J.H. Davenport, D. Wilson, I. Graham, G. Sankaran, A. Spence, J. Blake, and S.

Kynaston. 2014. Interdisciplinary Teaching of Computing to Mathematics Stu-
dents: Programming and Discrete Mathematics. Accepted by MSOR Connections
(2014). http://opus.bath.ac.uk/37841/

[7] Department for Education. 2018. Undergraduate degrees: relative
labour market returns. https://www.gov.uk/government/publications/
undergraduate-degrees-relative-labour-market-returns. (2018).

[8] S.S. Epp. 2011. Discrete Mathematics with Applications, 4th edition. Brooks/Cole
Cengage Learning.

[9] E. Murphy, T. Crick, and J.H. Davenport. 2017. An Analysis of Introductory
Programming Courses at UK Universities. The Art, Science and Engineering of
Programming 1, 2 (2017), 18–1–18–23.

[10] A. Vihavainen, M. Paksula, and M. Luukkaine. 2011. Extreme Apprenticeship
Method in Teaching Programming for Beginners. In Proceedings 42nd ACM tech-
nical symposium on Computer Science Education. 93–98.

